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HISTORICAL BACKGROUND

Ritt’s Functional Equation

Which polynomials f , f̂ , g, ĝ ∈ C[X] satisfy f ◦ f̂ = g ◦ ĝ?

Note: f (X) ◦ f̂ (X) := f (f̂ (X))

Example Solution: X3 ◦X4 = X12 = X6 ◦X2.

J. F. Ritt, Prime and composite polynomials, Trans. Amer.
Math. Soc. 23 (1922), 51–66.
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RITT’S THEOREM

Theorem (Ritt’s Theorem)

There are exactly two sources of solutions (up to simple methods for
modifying solutions) for the functional equation f ◦ f̂ = g ◦ ĝ, where
f , f̂ , g, ĝ ∈ C[X] and have degree at least 2:

1. Xa ◦Xbh(Xa) = Xbh(X)a ◦Xa, where h can be any function

2. Ta ◦ Tb = Tb ◦ Ta

Note: Ta denotes the ath Chebyshev polynomial: the unique
polynomial that satisfies Ta(cos(θ)) = cos(aθ).
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APPLICATIONS OF RITT’S RESULT

D. Ghioca, T. J. Tucker and M. E. Zieve, Intersections of
polynomial orbits, and a dynamical Mordell–Lang conjecture,
Invent. Math. 171 (2008), 463–483.

F. Pakovich, On polynomials sharing preimages of compact sets,
and related questions, Geom. Funct. Anal. 18 (2008), 163–183.

M. Briskin, N. Roytvarf and Y. Yomdin, Center conditions at
infinity for Abel differential equations, Annals of Math. (2) 172
(2010), 437–483.

A. Medvedev and T. Scanlon, Invariant varieties for
polynomial dynamical systems, Annals of Math. 179 (2014),
81–177.
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RITT’S STRATEGY

Ritt first solved f ◦ f̂ = g ◦ ĝ under the hypothesis that
f (X)− g(Y) was irreducible, and then deduced the case where
f (X)− g(Y) was reducible from the irreducible case.

Ritt wrote that “the analogous problem for fractional rational
functions is much more difficult.”

Special cases of this ”analogous problem” been studied
extensively by Ritt 1923, Fried 1973, Bilu–Tichy 2000,
Avanzi–Zannier 2001, and Pakovich 2010.
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FRIED’S QUESTION

Fried’s Question

Which f , f̂ , g, ĝ ∈ C(X), where the numerator of f (X)− g(Y) is
irreducible, satisfy f ◦ f̂ = g ◦ ĝ?

Theorem (Simplified Version)

If f , f̂ , g, ĝ ∈ C(X) satisfy f ◦ f̂ = g ◦ ĝ and f (X)− g(Y) has
irreducible numerator, then one of the following holds:

1. If f (X)− g(Y) has sufficiently large degree, then we can
explicitly write out the possibilities for either f (X) or g(X), and
we can almost do the same for the other function.

2. If f (X)− g(Y) does not have sufficiently large degree, then f
and g both belong to a finite list of possible functions.
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AN INTERESTING CONSEQUENCE

Cahn, Jones, and Spear conjectured that for f , g ∈ Q(X) with
degree at least 2 and c ∈ Q, the set {n ∈N : gn(c) ∈ f (Q)}
must be the union of finitely many numbers and finitely many
infinite arithmetic sequences.

Note: gn(c) denotes the nth iterate of g evaluated at c. For
example, g2(c) = g(g(c)).

J. Cahn, R. Jones and J. Spear, Powers in orbits of rational
functions: cases of an arithmetic dynamical Mordell-Lang
conjecture, 2015, arXiv:1512.03085.

This conjecture was recently proven by Hyde and Zieve.
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AN INTERESTING CONSEQUENCE, CONT’D

Hyde and Zieve proved that for f , g ∈ Q(X) with degree at
least 2 and c ∈ Q, the set {n ∈N : gn(c) ∈ f (Q)}must be the
union of finitely many numbers and finitely many infinite
arithmetic sequences.

Using our results, we can say that each infinite arithmetic
sequence must start with a number which is at most
4 + (deg f )2. Hence if f is a degree-3 function, then each
arithmetic sequence must start with a number no larger than 13.

Outline of Proof: For each fixed n, the equation f (X) = gn(Y)
must have infinitely many rational solutions. By Faltings’
Theorem, the curve of f (X)− gn(Y) must have a genus of 0 or
1. If the curve has genus 0, then there must exist nonconstant
rational functions f̂ and ĝ for which f ◦ f̂ = gn ◦ ĝ. We can then
proceed inductively (downwards) on n.



8/14

AN INTERESTING CONSEQUENCE, CONT’D

Hyde and Zieve proved that for f , g ∈ Q(X) with degree at
least 2 and c ∈ Q, the set {n ∈N : gn(c) ∈ f (Q)}must be the
union of finitely many numbers and finitely many infinite
arithmetic sequences.

Using our results, we can say that each infinite arithmetic
sequence must start with a number which is at most
4 + (deg f )2. Hence if f is a degree-3 function, then each
arithmetic sequence must start with a number no larger than 13.

Outline of Proof: For each fixed n, the equation f (X) = gn(Y)
must have infinitely many rational solutions. By Faltings’
Theorem, the curve of f (X)− gn(Y) must have a genus of 0 or
1. If the curve has genus 0, then there must exist nonconstant
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KEY TOOL

Definition (Ramification)

The ramification index of a rational function f (X) at a point
P ∈ C∪ {∞}, denoted ef (P), is the multiplicity of P as a root of
f (X)− f (P). The ramification multiset of f (X) over a point
Q ∈ C∪ {∞} is

Ef (Q) := {ef (P) : P ∈ C∪ {∞}, f (P) = Q}.

Example: For f (X) = X3 + X4 = X3(X + 1) we have ef (0) = 3
and ef (−1) = 1, and thus Ef (0) = [1, 3].

Example: For f (x) = (X + 1)(X + 2)3(X− 3)5 we have
ef (−1) = 1 and ef (−2) = 3 and ef (3) = 5, and thus
Ef (0) = [1, 3, 5].
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OUTLINE OF OUR STRATEGY

Rational function
problems

Ramification
multiset

conditions

Candidate
ramification

multisets
of f and g

Picard’s Theorem,
Riemann–Hurwitz

Combinatorial
optimization

Hurwitz’s Theorem,
Galois Theory
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COMBINATORIAL OPTIMIZATION

Our key innovation is to study the multisets over a single
point, and show that they must have a very special property,
namely that almost all ramification indices equal one another.

Acceptable Ramification Multiset: Ef (0) = [4, 4, 4, 4, 4, 4, 4, 4, 7]

Unacceptable Ramification Multiset: Ef (0) = [1, 3, 6, 7, 8, 9]
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OUR RESULT

Theorem

For any f , g ∈ C(X) such that the numerator of f (X)− g(Y) is an
irreducible polynomial in C[X, Y], if there are nonconstant rational
functions f̂ , ĝ on the complex plane such that f ◦ f̂ = g ◦ ĝ then:

1. If f (X)− g(Y) has degree greater than 150, then either f or g
belongs to an explicit list of nice functions (for instance, f (X)
could be Xm or Xm + X−m). More rigorously, at least one of the
extensions C(X)/C(f (X)) or C(X)/C(g(X)) has Galois
closure of genus 0 or 1. We can also control the ramification of
the other function.

2. If f (X)− g(Y) has degree less than or equal to 150, then there
are a finite number of possibilities for the ramification of f and g.
We can therefore implement an exhaustive search by computer to
find all possibilities for f and g.
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CONCLUSIONS

I If nonconstant f , g, f̂ , ĝ ∈ C(X) satisfy f ◦ f̂ = g ◦ ĝ, where
the numerator of f (X)− g(Y) is irreducible and has degree
greater than 150, then we describe the ramification of f and
g, and explicitly determine at least one of these functions.

I If f (X)− g(Y) has degree at most 150, then there is a finite
list of possible ramification for f and g.

I In the future, we will use the case where f (X)− g(Y) has
irreducible numerator to resolve the case where
f (X)− g(Y) can have reducible numerator, much like Ritt
did with the original functional equation.
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